Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section16.8References and Suggested Readings

[1]
  
Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules. 2nd ed. Springer, New York, 1992.
[2]
  
Atiyah, M. F. and MacDonald, I. G. Introduction to Commutative Algebra. Westview Press, Boulder, CO, 1994.
[3]
  
Herstein, I. N. Noncommutative Rings. Mathematical Association of America, Washington, DC, 1994.
[4]
  
Kaplansky, I. Commutative Rings. Revised edition. University of Chicago Press, Chicago, 1974.
[5]
  
Knuth, D. E. The Art of Computer Programming: Semi-Numerical Algorithms, vol. 2. 3rd ed. Addison-Wesley Professional, Boston, 1997.
[6]
  
Lidl, R. and Pilz, G. Applied Abstract Algebra. 2nd ed. Springer, New York, 1998. A good source for applications.
[7]
  
Mackiw, G. Applications of Abstract Algebra. Wiley, New York, 1985.
[8]
  
McCoy, N. H. Rings and Ideals. Carus Monograph Series, No. 8. Mathematical Association of America, Washington, DC, 1968.
[9]
  
McCoy, N. H. The Theory of Rings. Chelsea, New York, 1972.
[10]
  
Zariski, O. and Samuel, P. Commutative Algebra, vols. I and II. Springer, New York, 1975, 1960.