Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section7.5References and Suggested Readings

[1]
  
Bressoud, D. M. Factorization and Primality Testing. Springer-Verlag, New York, 1989.
[2]
  
Diffie, W. and Hellman, M. E. “New Directions in Cryptography,” IEEE Trans. Inform. Theory 22 (1976), 644–54.
[3]
  
Gardner, M. “Mathematical games: A new kind of cipher that would take millions of years to break,” Scientific American 237 (1977), 120–24.
[4]
  
Granville, A. “Primality Testing and Carmichael Numbers,” Notices of the American Mathematical Society 39(1992), 696–700.
[5]
  
Hellman, M. E. “The Mathematics of Public Key Cryptography,” Scientific American 241(1979), 130–39.
[6]
  
Koblitz, N. A Course in Number Theory and Cryptography. 2nd ed. Springer, New York, 1994.
[7]
  
Pomerance, C., ed. “Cryptology and Computational Number Theory”, Proceedings of Symposia in Applied Mathematics 42(1990) American Mathematical Society, Providence, RI.
[8]
  
Rivest, R. L., Shamir, A., and Adleman, L., “A Method for Obtaining Signatures and Public-key Cryptosystems,” Comm. ACM 21(1978), 120–26.