Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{\nmid} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section7.5References and Suggested Readings

Bressoud, D. M. Factorization and Primality Testing. Springer-Verlag, New York, 1989.
Diffie, W. and Hellman, M. E. “New Directions in Cryptography,” IEEE Trans. Inform. Theory 22 (1976), 644–54.
Gardner, M. “Mathematical games: A new kind of cipher that would take millions of years to break,” Scientific American 237 (1977), 120–24.
Granville, A. “Primality Testing and Carmichael Numbers,” Notices of the American Mathematical Society 39(1992), 696–700.
Hellman, M. E. “The Mathematics of Public Key Cryptography,” Scientific American 241(1979), 130–39.
Koblitz, N. A Course in Number Theory and Cryptography. 2nd ed. Springer, New York, 1994.
Pomerance, C., ed. “Cryptology and Computational Number Theory”, Proceedings of Symposia in Applied Mathematics 42(1990) American Mathematical Society, Providence, RI.
Rivest, R. L., Shamir, A., and Adleman, L., “A Method for Obtaining Signatures and Public-key Cryptosystems,” Comm. ACM 21(1978), 120–26.