Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section19.5Programming Exercises

1

A Boolean or switching function on \(n\) variables is a map \(f : \{O, I\}^n \rightarrow \{ 0, I\}\). A Boolean polynomial is a special type of Boolean function: it is any type of Boolean expression formed from a finite combination of variables \(x_1, \ldots, x_n\) together with \(O\) and \(I\), using the operations \(\vee\), \(\wedge\), and \('\). The values of the functions are defined in Table 19.33. Write a program to evaluate Boolean polynomials.

\(x\) \(y\) \(x'\) \(x \vee y\) \(x \wedge y\)
0 0 1 0 0
0 1 1 1 0
1 0 0 1 0
1 1 0 1 1
Table19.33Boolean polynomials