Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section8.7References and Suggested Readings

Blake, I. F. “Codes and Designs,” Mathematics Magazine 52(1979), 81–95.
Hill, R. A First Course in Coding Theory. Oxford University Press, Oxford, 1990.
Levinson, N. “Coding Theory: A Counterexample to G. H. Hardy's Conception of Applied Mathematics,” American Mathematical Monthly 77(1970), 249–58.
Lidl, R. and Pilz, G. Applied Abstract Algebra. 2nd ed. Springer, New York, 1998.
MacWilliams, F. J. and Sloane, N. J. A. The Theory of Error-Correcting Codes. North-Holland Mathematical Library, 16, Elsevier, Amsterdam, 1983.
Roman, S. Coding and Information Theory. Springer-Verlag, New York, 1992.
Shannon, C. E. “A Mathematical Theory of Communication,” Bell System Technical Journal 27(1948), 379–423, 623–56.
Thompson, T. M. From Error-Correcting Codes through Sphere Packing to Simple Groups. Carus Monograph Series, No. 21. Mathematical Association of America, Washington, DC, 1983.
van Lint, J. H. Introduction to Coding Theory. Springer, New York, 1999.