Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section8.7References and Suggested Readings

[1]
  
Blake, I. F. “Codes and Designs,” Mathematics Magazine 52(1979), 81–95.
[2]
  
Hill, R. A First Course in Coding Theory. Oxford University Press, Oxford, 1990.
[3]
  
Levinson, N. “Coding Theory: A Counterexample to G. H. Hardy's Conception of Applied Mathematics,” American Mathematical Monthly 77(1970), 249–58.
[4]
  
Lidl, R. and Pilz, G. Applied Abstract Algebra. 2nd ed. Springer, New York, 1998.
[5]
  
MacWilliams, F. J. and Sloane, N. J. A. The Theory of Error-Correcting Codes. North-Holland Mathematical Library, 16, Elsevier, Amsterdam, 1983.
[6]
  
Roman, S. Coding and Information Theory. Springer-Verlag, New York, 1992.
[7]
  
Shannon, C. E. “A Mathematical Theory of Communication,” Bell System Technical Journal 27(1948), 379–423, 623–56.
[8]
  
Thompson, T. M. From Error-Correcting Codes through Sphere Packing to Simple Groups. Carus Monograph Series, No. 21. Mathematical Association of America, Washington, DC, 1983.
[9]
  
van Lint, J. H. Introduction to Coding Theory. Springer, New York, 1999.