Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{\nmid} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section21.5References and Suggested Readings

Dean, R. A. Elements of Abstract Algebra. Wiley, New York, 1966.
Dudley, U. A Budget of Trisections. Springer-Verlag, New York, 1987. An interesting and entertaining account of how not to trisect an angle.
Fraleigh, J. B. A First Course in Abstract Algebra. 7th ed. Pearson, Upper Saddle River, NJ, 2003.
Kaplansky, I. Fields and Rings, 2nd ed. University of Chicago Press, Chicago, 1972.
Klein, F. Famous Problems of Elementary Geometry. Chelsea, New York, 1955.
Martin, G. Geometric Constructions. Springer, New York, 1998.
H. Pollard and H. G. Diamond. Theory of Algebraic Numbers, Dover, Mineola, NY, 2010.
Walker, E. A. Introduction to Abstract Algebra. Random House, New York, 1987. This work contains a proof showing that every field has an algebraic closure.